Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1364234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596219

RESUMO

Silver-Russell syndrome (SRS, OMIM, 180860) is a rare genetic disorder with a wide spectrum of symptoms. The most common features are intrauterine growth retardation (IUGR), poor postnatal development, macrocephaly, triangular face, prominent forehead, body asymmetry, and feeding problems. The diagnosis of SRS is based on a combination of clinical features. Up to 60% of SRS patients have chromosome 7 or 11 abnormalities, and <1% show abnormalities in IGF2 signaling pathway genes (IGF2, HMGA2, PLAG1 and CDKN1C). The underlying genetic cause remains unknown in about 40% of cases (idiopathic SRS). We report a novel IGF2 variant c.[-6-2A>G] (NM_000612) in a child with severe IUGR and clinical features of SRS and confirm the utility of targeted exome sequencing in patients with negative results to common genetic analyses. In addition, we report that long-term growth hormone treatment improves height SDS in this patient.


Assuntos
Hormônio do Crescimento Humano , Síndrome de Silver-Russell , Criança , Feminino , Humanos , Síndrome de Silver-Russell/tratamento farmacológico , Síndrome de Silver-Russell/genética , Síndrome de Silver-Russell/diagnóstico , Hormônio do Crescimento/genética , Herança Paterna , Fenótipo , Hormônio do Crescimento Humano/uso terapêutico , Hormônio do Crescimento Humano/genética , Retardo do Crescimento Fetal/genética , Fator de Crescimento Insulin-Like II/genética
2.
Science ; 383(6687): 1111-1117, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452081

RESUMO

The extent to which prophage proteins interact with eukaryotic macromolecules is largely unknown. In this work, we show that cytoplasmic incompatibility factor A (CifA) and B (CifB) proteins, encoded by prophage WO of the endosymbiont Wolbachia, alter long noncoding RNA (lncRNA) and DNA during Drosophila sperm development to establish a paternal-effect embryonic lethality known as cytoplasmic incompatibility (CI). CifA is a ribonuclease (RNase) that depletes a spermatocyte lncRNA important for the histone-to-protamine transition of spermiogenesis. Both CifA and CifB are deoxyribonucleases (DNases) that elevate DNA damage in late spermiogenesis. lncRNA knockdown enhances CI, and mutagenesis links lncRNA depletion and subsequent sperm chromatin integrity changes to embryonic DNA damage and CI. Hence, prophage proteins interact with eukaryotic macromolecules during gametogenesis to create a symbiosis that is fundamental to insect evolution and vector control.


Assuntos
Proteínas de Bactérias , Desoxirribonucleases , Drosophila melanogaster , Herança Paterna , Prófagos , RNA Longo não Codificante , Espermatozoides , Proteínas Virais , Wolbachia , Animais , Masculino , Citoplasma/metabolismo , DNA/metabolismo , Prófagos/genética , Prófagos/metabolismo , RNA Longo não Codificante/metabolismo , Espermatozoides/crescimento & desenvolvimento , Espermatozoides/metabolismo , Wolbachia/metabolismo , Wolbachia/virologia , Proteínas Virais/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/microbiologia , Proteínas de Bactérias/metabolismo , Desoxirribonucleases/metabolismo
3.
Science ; 383(6683): 646-653, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38330116

RESUMO

In multicellular organisms, sexual reproduction relies on the formation of highly differentiated cells, the gametes, which await fertilization in a quiescent state. Upon fertilization, the cell cycle resumes. Successful development requires that male and female gametes are in the same phase of the cell cycle. The molecular mechanisms that reinstate cell division in a fertilization-dependent manner are poorly understood in both animals and plants. Using Arabidopsis, we show that a sperm-derived signal induces the proliferation of a female gamete, the central cell, precisely upon fertilization. The central cell is arrested in S phase by the activity of the RETINOBLASTOMA RELATED1 (RBR1) protein. Upon fertilization, delivery of the core cell cycle component CYCD7;1 causes RBR1 degradation and thus S phase progression, ensuring the formation of functional endosperm and, consequently, viable seeds.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Endosperma , Gametogênese Vegetal , Herança Paterna , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Divisão Celular , Endosperma/citologia , Endosperma/fisiologia
4.
Eur J Hum Genet ; 32(1): 31-36, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37029316

RESUMO

Maternally inherited 15q11-q13 duplications are generally found to cause more severe neurodevelopmental anomalies compared to paternally inherited duplications. However, this assessment is mainly inferred from the study of patient populations, causing an ascertainment bias towards patients at the more severe end of the phenotypic spectrum. Here, we analyze the low coverage genome-wide cell-free DNA sequencing data obtained from pregnant women during non-invasive prenatal screening (NIPS). We detect 23 15q11-q13 duplications in 333,187 pregnant women (0.0069%), with an approximately equal distribution between maternal and paternal duplications. Maternally inherited duplications are always associated with a clinical phenotype (ranging from learning difficulties to intellectual impairment, epilepsy and psychiatric disorders), while paternal duplications are normal or associated with milder phenotypes (mild learning difficulties and dyslexia). This data corroborates the difference in impact between paternally and maternally inherited 15q11-q13 duplications, contributing to the improvement of genetic counselling. We recommend reporting 15q11-q13 duplications identified during genome-wide NIPS with appropriate genetic counselling for these pregnant women in the interest of both mothers and future children.


Assuntos
Mães , Herança Paterna , Gravidez , Criança , Humanos , Feminino , Alelos , Fenótipo , Cromossomos Humanos Par 15/genética
5.
Birth Defects Res ; 116(1): e2286, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38087897

RESUMO

BACKGROUND: The familial occurrence of esophageal atresia and tracheoesophageal fistula (EA-TEF) is very rare and the genetic basis behind the isolated familial cases have not been identified. A male infant born with EA-TEF and his affected father were evaluated with whole genome sequence to define a genetic causative variation in paternally inherited EA-TEF. CASE REPORT: A male infant was born to 29-years-old, gravida 1, para 1 women by normal vaginal delivery. The patient was diagnosed as Type-C EA-TEF. In his family history, his father was also operated for EA-TEF during neonatal period. He had no associated anomaly despite patent foramen ovale. Genomic DNAs were extracted from peripheral blood of the patient and the father. When causative genes responsible for EA-TEF were filtered out, four different variants in NOTCH2, SAMD9, SUPT20H and CHRND were found. Except the variant found in CHRND (NM_000751.2, c.381C>G, p.(Tyr127Ter)), other three variants were not found to be segregated with the father who has EA-TEF also. This nonsense variant was not found in GnomAD database. CONCLUSION: CHRND variant found in both EA-TEF patient and his affected father suggest that CHRND variant might possibly be considered as one of the causative genetic variants in familial isolated EA-TEF patients.


Assuntos
Atresia Esofágica , Fístula Traqueoesofágica , Recém-Nascido , Gravidez , Humanos , Masculino , Feminino , Atresia Esofágica/genética , Atresia Esofágica/epidemiologia , Herança Paterna , Fístula Traqueoesofágica/genética , Fístula Traqueoesofágica/epidemiologia , Parto , Peptídeos e Proteínas de Sinalização Intracelular , Receptores Colinérgicos
6.
PeerJ ; 11: e16118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941935

RESUMO

The Amazon Molly (Poecilia formosa) reproduces by gynogenesis, a relatively rare form of asexual reproduction where sperm is required to trigger embryogenesis, but male genes are not incorporated into the genome of the embryo. Studying gynogenesis could isolate paternal non-genetic effects on reproduction. This study explored which of eleven related species can produce sperm to trigger gynogenesis through natural mating in P. formosa, and whether sympatry affects reproductive success in P. formosa. Reproductive outcomes measured were relative reproductive output (number of offspring in the first brood divided by female standard length), relative embryo output (number of embryos in the first brood divided by female standard length) and combined relative reproductive output (sum of relative reproductive output and relative embryo output). For large (>4 cm) P. formosa, combined relative reproductive output was higher with sympatric Atlantic Molly (Poecilia mexicana) males than with allopatric P. mexicana males. P. formosa produced live offspring or late-stage embryos with all species tested in the genera Poecilia and Limia but did not produce offspring or embryos with males from the genera Gambusia, Girardinus, Heterandria, Poeciliopsis, or Xiphophorus. This information, as well as the limitations characterized in this study, will set a foundation for use of P. formosa as a model for paternal effects and the species specificity of sperm on fertilization, embryogenesis, and reproductive success.


Assuntos
Poecilia , Animais , Masculino , Feminino , Poecilia/genética , Herança Paterna , Taiwan , Sêmen , Espermatozoides
7.
BMC Biol ; 21(1): 255, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37953286

RESUMO

BACKGROUND: The concept of the inheritance of acquired traits, a foundational principle of Lamarck's evolutionary theory, has garnered renewed attention in recent years. Evidence for this phenomenon remained limited for decades but gained prominence with the Överkalix cohort study in 2002. This study revealed a link between cardiovascular disease incidence and the food availability experienced by individuals' grandparents during their slow growth periods, reigniting interest in the inheritance of acquired traits, particularly in the context of non-communicable diseases. This scientometric analysis and systematic review comprehensively explores the current landscape of paternally transmitted acquired metabolic traits. RESULTS: Utilizing Scopus Advanced search and meticulous screening, we included mammalian studies that document the inheritance or modification of metabolic traits in subsequent generations of unexposed descendants. Our inclusive criteria encompass intergenerational and transgenerational studies, as well as multigenerational exposures. Predominantly, this field has been driven by a select group of researchers, potentially shaping the design and focus of existing studies. Consequently, the literature primarily comprises transgenerational rodent investigations into the effects of ancestral exposure to environmental pollutants on sperm DNA methylation. The complexity and volume of data often lead to multiple or redundant publications. This practice, while understandable, may obscure the true extent of the impact of ancestral exposures on the health of non-exposed descendants. In addition to DNA methylation, studies have illuminated the role of sperm RNAs and histone marks in paternally acquired metabolic disorders, expanding our understanding of the mechanisms underlying epigenetic inheritance. CONCLUSIONS: This review serves as a comprehensive resource, shedding light on the current state of research in this critical area of science, and underscores the need for continued exploration to uncover the full spectrum of paternally mediated metabolic inheritance.


Assuntos
Epigênese Genética , Herança Paterna , Humanos , Animais , Masculino , Estudos de Coortes , Sêmen , Metilação de DNA , Mamíferos
8.
Science ; 382(6671): 643-644, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37943909

RESUMO

The specialized packaging of sperm DNA preserves genome stability in the fruit fly zygote.


Assuntos
Empacotamento do DNA , Drosophila melanogaster , Epigênese Genética , Herança Paterna , Espermatozoides , Animais , Masculino , Zigoto , Drosophila melanogaster/genética
9.
Science ; 382(6671): 725-731, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37943933

RESUMO

The global replacement of histones with protamines in sperm chromatin is widespread in animals, including insects, but its actual function remains enigmatic. We show that in the Drosophila paternal effect mutant paternal loss (pal), sperm chromatin retains germline histones H3 and H4 genome wide without impairing sperm viability. However, after fertilization, pal sperm chromosomes are targeted by the egg chromosomal passenger complex and engage into a catastrophic premature division in synchrony with female meiosis II. We show that pal encodes a rapidly evolving transition protein specifically required for the eviction of (H3-H4)2 tetramers from spermatid DNA after the removal of H2A-H2B dimers. Our study thus reveals an unsuspected role of histone eviction from insect sperm chromatin: safeguarding the integrity of the male pronucleus during female meiosis.


Assuntos
Amidina-Liases , Cromatina , Proteínas de Drosophila , Drosophila melanogaster , Fertilização , Histonas , Herança Paterna , Espermatozoides , Animais , Feminino , Masculino , Cromatina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Histonas/metabolismo , Espermatozoides/metabolismo , Amidina-Liases/genética , Amidina-Liases/metabolismo , Empacotamento do DNA
10.
Biol Lett ; 19(11): 20230368, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37991195

RESUMO

Sperm ageing after ejaculation can generate paternal environment effects that impact offspring fitness. In many species, female reproductive fluids (FRFs), i.e. ancillary fluids released by eggs or within the female reproductive tract, may protect sperm from ageing and can additionally interact with sperm to influence offspring viability. This raises the intriguing prospect that FRFs may alleviate paternal effects associated with sperm ageing. Here, we test this novel hypothesis using the broadcast spawning mussel, Mytilus galloprovincialis. We show that incubating sperm in FRF prior to fertilization increases offspring viability, and that these effects occur independently of sperm age. Our results provide novel evidence that FRFs allow females to selectively bias fertilization toward higher quality sperm within an ejaculate, which in turn yields more viable offspring. We consider this FRF-mediated paternal effect in the context of female physiological control over fertilization and the transgenerational effects of female-regulated haploid selection.


Assuntos
Fertilizantes , Herança Paterna , Masculino , Feminino , Humanos , Sêmen , Espermatozoides/fisiologia , Reprodução , Fertilização
11.
Mol Phylogenet Evol ; 189: 107915, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37666379

RESUMO

Mountainous regions provide a multitude of habitats and opportunities for complex speciation scenarios. Hybridization leading to chloroplast capture, which can be revealed by incongruent phylogenetic trees, is one possible outcome. Four allopatric Taxus lineages (three species and an undescribed lineage) from the Hengduan Mountains, southwest China, exhibit conflicting phylogenetic relationships between nuclear and chloroplast phylogenies. Here, we use multi-omic data at the population level to investigate their historical speciation processes. Population genomic analysis based on ddRAD-seq data revealed limited contemporary inter-specific gene flow involving only populations located close to another species. In a historical context, chloroplast and nuclear data (transcriptome) consistently showed conflicting phylogenetic relationships for T. florinii and the Emei type lineage. ILS and chloroplast recombination were excluded as possible causes, and transcriptome and ddRAD-seq data revealed an absence of the mosaic nuclear genomes that characterize hybrid origin scenarios. Therefore, T. florinii appears to have originated when a lineage of T. florinii captured the T. chinensis plastid type, whereas plastid introgression in the opposite direction generated the Emei Type. All four species have distinct ecological niche based on community investigations and ecological niche analyses. We propose that the origins of both species represent very rare examples of chloroplast capture events despite the paternal cpDNA inheritance of gymnosperms. Specifically, allopatrically and/or ecologically diverged parental species experienced a rare secondary contact, subsequent hybridization and reciprocal chloroplast capture, generating two new lineages, each of which acquired a unique ecological niche. These events might have been triggered by orogenic activities of the Hengduan Mountains and an intensification of the Asian monsoon in the late Miocene, and may represent a scenario more common in these mountains than presently known.


Assuntos
Taxus , Filogenia , Taxus/genética , Herança Paterna , China , Cloroplastos/genética
12.
Int J Mol Sci ; 24(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37175902

RESUMO

Members of the TaCKX gene family (GFMs) encode the cytokinin oxygenase/dehydrogenase enzyme (CKX), which irreversibly degrades cytokinins in the organs of wheat plants; therefore, these genes perform a key role in the regulation of yield-related traits. The purpose of the investigation was to determine how expression patterns of these genes, together with the transcription factor-encoding gene TaNAC2-5A, and yield-related traits are inherited to apply this knowledge to speed up breeding processes. The traits were tested in 7 days after pollination (DAP) spikes and seedling roots of maternal and paternal parents and their F2 progeny. The expression levels of most of them and the yield were inherited in F2 from the paternal parent. Some pairs or groups of genes cooperated, and some showed opposite functions. Models of up- or down-regulation of TaCKX GFMs and TaNAC2-5A in low-yielding maternal plants crossed with higher-yielding paternal plants and their high-yielding F2 progeny reproduced gene expression and yield of the paternal parent. The correlation coefficients between TaCKX GFMs, TaNAC2-5A, and yield-related traits in high-yielding F2 progeny indicated which of these genes were specifically correlated with individual yield-related traits. The most common was expressed in 7 DAP spikes TaCKX2.1, which positively correlated with grain number, grain yield, spike number, and spike length, and seedling root mass. The expression levels of TaCKX1 or TaNAC2-5A in the seedling roots were negatively correlated with these traits. In contrast, the thousand grain weight (TGW) was negatively regulated by TaCKX2.2.2, TaCKX2.1, and TaCKX10 in 7 DAP spikes but positively correlated with TaCKX10 and TaNAC2-5A in seedling roots. Transmission of TaCKX GFMs and TaNAC2-5A expression patterns and yield-related traits from parents to the F2 generation indicate their paternal imprinting. These newly shown data of nonmendelian epigenetic inheritance shed new light on crossing strategies to obtain a high-yielding F2 generation.


Assuntos
Herança Paterna , Triticum , Triticum/genética , Melhoramento Vegetal , Fenótipo , Plântula/genética
13.
Curr Opin Genet Dev ; 80: 102053, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37245242

RESUMO

In contrast with nuclear genes that are passed on through both parents, mitochondrial genes are maternally inherited in most species, most of the time. The genetic conflict stemming from this transmission asymmetry is well-documented, and there is an abundance of population-genetic theory associated with it. While occasional or aberrant paternal inheritance occurs, there are only a few cases where exclusive paternal inheritance of mitochondrial genomes is the evolved state. Why this is remains poorly understood. By examining commonalities between species with exclusive paternal inheritance, we discuss what they may tell us about the evolutionary forces influencing mitochondrial inheritance patterns. We end by discussing recent technological advances that make exploring the causes and consequences of paternal inheritance feasible.


Assuntos
Genoma Mitocondrial , Herança Paterna , Mitocôndrias/genética , Padrões de Herança/genética , Genes Mitocondriais/genética , Genoma Mitocondrial/genética , DNA Mitocondrial/genética
14.
J Evol Biol ; 36(4): 720-729, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36946550

RESUMO

Advanced paternal age has been repeatedly shown to modulate offspring quality via male- and/or female-driven processes, and there are theoretical reasons to expect that some of these effects can be sex-specific. For example, sex allocation theory predicts that, when mated with low-condition males, mothers should invest more in their daughters compared to their sons. This is because male fitness is generally more condition-dependent and more variable than female fitness, which makes it less risky to invest in female offspring. Here, we explore whether paternal age can affect the quality and quantity of offspring in a sex-specific way using Drosophila melanogaster as a model organism. In order to understand the contribution of male-driven processes on paternal age effects, we also measured the seminal vesicle size of young and older males and explored its relationship with reproductive success and offspring quality. Older males had lower competitive reproductive success, as expected, but there was no difference between the offspring sex ratio of young and older males. However, we found that paternal age caused an increase in offspring quality (i.e., offspring weight), and that this increase was more marked in daughters than sons. We discuss different male- and female-driven processes that may explain such sex-specific paternal age effects.


Assuntos
Drosophila melanogaster , Idade Paterna , Animais , Feminino , Masculino , Drosophila melanogaster/genética , Reprodução , Razão de Masculinidade , Herança Paterna
15.
Ann Hum Biol ; 50(1): 52-55, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36688836

RESUMO

BACKGROUND: Hunan, a multinational province in China, possesses more than fifty ethnic groups, such as the Han, Yao, Tujia, Miao, and so on. AIMS: To evaluate the forensic efficiency of the novel panel and investigate the genetic relationships between Hunan Han population and 12 other reference populations from China. SUBJECTS AND METHODS: Haplotypic data of 153 unrelated males of Hunan Han population were investigated using the AGCU Y SUPP Plus amplification system containing 27 Y-chromosomal short tandem repeat (STR) loci. Forensic parameters were calculated to evaluate the application efficiency of this panel in Hunan Han population. RESULTS: Haplotype diversity, discrimination capability, and match probability values were 0.9999999977, 1.0000, and 0.0065, respectively. Pairwise fixation index values demonstrated that the minimal genetic differentiation (0.0073) was found between Hunan Han population and Hunan Yao group, while the maximal genetic differentiation (0.0651) was observed between Hunan Han and Guangxi Yao group from the perspective of the patrilineal DNA analysis. CONCLUSIONS: The haplotype distributions of 27 Y-STR loci in Hunan Han population exhibited remarkable polymorphisms. Moreover, this panel has potential advantages for the forensic applications regarding family investigations, paternity testing of the paternal line, and population genetics.


Assuntos
População do Leste Asiático , Herança Paterna , Masculino , Humanos , Haplótipos , Cromossomos Humanos Y/genética , China , Genética Populacional , Repetições de Microssatélites/genética , Frequência do Gene
16.
Oecologia ; 201(2): 409-419, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36682011

RESUMO

Individuals exposed to predation risk can produce offspring with altered phenotypes. Most work on predation-induced parental effects has focused on maternal effects or on generalized parental effects where both parents are exposed to risk. We conducted an experiment to measure and compare maternal and paternal effects on offspring phenotypes and test for interactions in those effects. We exposed 82 snails from 22 lines to control or predator cues and created line dyads with the four possible mating pairings of control and predator cue exposed individuals. We measured the resulting body masses, shell masses, shell shapes, and anti-predator behaviors of the offspring. We found some evidence that offspring were larger and heavier when the mother was exposed to predation cues, but that this effect was negated when the father was also exposed. The mass of offspring shells relative to their total mass was unaffected by parental treatments. Shell shape was marginally affected by maternal treatment, but not paternal treatment. Behavioral responses to cues were not affected by maternal or paternal treatments. Our results suggest potential conflict between male and female parental effects and highlight the importance of examining the interactions of maternal and paternal effects.


Assuntos
Herança Materna , Herança Paterna , Animais , Masculino , Feminino , Caramujos/fisiologia , Água Doce
17.
J Agric Food Chem ; 71(2): 991-993, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36617948

RESUMO

Microplastics (MPs) and nanoplastics (NPs) are widely detected in food and the human environment. More studies have begun to pay attention to the influence of MPs and NPs on genetics; in particular, exposure of paternal generation to MPs and NPs on epigenetic inheritance and the offspring of animal models have attracted considerable interest. In this Viewpoint, we mainly discuss the suggestion that reproductive genetic changes in the male parent have the potential to be transferred to the offspring and illustrate how MPs and NPs in the father tissues are distributed in later generations. We provide a systematic understanding of the potential health hazards of paternal exposure to MPs and NPs to subsequent generations and put forth recommendations about the epigenetic effects for future research on public health and food safety.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Masculino , Humanos , Microplásticos/toxicidade , Plásticos/toxicidade , Herança Paterna , Reprodução , Modelos Animais , Poluentes Químicos da Água/análise
19.
Cells ; 11(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36497039

RESUMO

Telomeres, markers for cellular senescence, have been found substantially influenced by parental inheritance. It is well known that genomic stability is preserved by the DNA repair mechanism through telomerase. This study aimed to determine the association between parents−newborn telomere length (TL) and telomerase gene (TERT), highlighting DNA repair combined with TL/TERT polymorphism and immunosenescence of the triad. The mother−father−newborn triad blood samples (n = 312) were collected from Ziauddin Hospitals, Pakistan, between September 2021 and June 2022. The telomere length (T/S ratio) was quantified by qPCR, polymorphism was identified by Sanger sequencing, and immunosenescence by flow cytometry. The linear regression was applied to TL and gene association. The newborns had longest TL (2.51 ± 2.87) and strong positive association (R = 0.25, p ≤ 0.0001) (transgenerational health effects) with mothers' TL (1.6 ± 2.00). Maternal demographics­socioeconomic status, education, and occupation­showed significant effects on TL of newborns (p < 0.015, 0.034, 0.04, respectively). The TERT risk genotype CC (rs2736100) was predominant in the triad (0.6, 0.5, 0.65, respectively) with a strong positive association with newborn TL (ß = 2.91, <0.0011). Further analysis highlighted the expression of KLRG 1+ in T-cells with shorter TL but less frequent among newborns. The study concludes that TERT, parental TL, antenatal maternal health, and immunity have a significantly positive effect on the repair of newborn TL.


Assuntos
Imunidade , Telomerase , Telômero , Feminino , Humanos , Recém-Nascido , Gravidez , Genótipo , Mães , Telomerase/genética , Telômero/genética , Encurtamento do Telômero/genética , Pai , Masculino , Imunidade/genética , Herança Materna , Herança Paterna
20.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36498858

RESUMO

The evidence supports the occurrence of environmentally-induced paternal epigenetic inheritance that shapes the offspring phenotype in the absence of direct or indirect paternal care and clearly demonstrates that sperm epigenetics is one of the major actors mediating these paternal effects. However, in most animals, while sperm makes up only a small portion of the seminal fluid, males also have a complex mixture of proteins, peptides, different types of small noncoding RNAs, and cell-free DNA fragments in their ejaculate. These seminal fluid contents (Sfcs) are in close contact with the reproductive cells, tissues, organs, and other molecules of both males and females during reproduction. Moreover, their production and use are adjusted in response to environmental conditions, making them potential markers of environmentally- and developmentally-induced paternal effects on the next generation(s). Although there is some intriguing evidence for Sfc-mediated paternal effects, the underlying molecular mechanisms remain poorly defined. In this review, the current evidence regarding the links between seminal fluid and environmental paternal effects and the potential pathways and mechanisms that seminal fluid may follow in mediating paternal epigenetic inheritance are discussed.


Assuntos
Ácidos Nucleicos , Herança Paterna , Animais , Feminino , Masculino , Sêmen , Ácidos Nucleicos/metabolismo , Espermatozoides/metabolismo , Epigênese Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...